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ABSTRACT
Mobile ad-hoc networks are becoming more common as robotic

swarm technology becomes possible. One issue surrounding swarm

technology is communication between robots. Communication

costs time and energy, and can impact the performance of a swarm.

In order to control the network, network state information must

be acquired through network monitoring. We propose a novel

REgression-based network Monitoring (REM) algorithm where

robots in a swarm receive network state data only when neces-

sary for the task at hand. This algorithm will save time and energy

in communication by creating predictive models using regressions,

minimizing network monitoring overhead.

CCS CONCEPTS
• Networks → Network monitoring; Control path algorithms;
Network control algorithms;Network design and planning algorithms;
Programming interfaces; Network management.
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1 INTRODUCTION
A robotic swarm is a group of locally interacting robots collaborat-

ing towards a common goal [5]. These robots can be air vehicles,

ground robots, etc. Swarm robotic systems have an overwhelming

number of possible applications as they provide many advantages

over single robots. Robotic swarms can exploit the sensing capa-

bilities of having a large group; robots in the swarm can specialize

their sensors and be built for a specific purpose. Robotic swarms

have high situational awareness which allows them to be deployed
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in highly constrained environments unfit for humans. Potential

environments where human deployment is impractical, but robotic

swarms can flourish, include: nuclear, chemical, and biological at-

tack detection [5, 21]; battlefield surveillance [5, 21]; search and

rescue [5]; and space exploration [5]. In addition, robotic swarms

can provide many benefits in environmental monitoring of forests,

lakes, etc., and pollution detection [5]. If properly implemented,

robotic swarms will be robust to corrupt robots as well as robots

leaving or joining the network. Robustness is particularly interest-

ing in tasks such as mine detection. Individual robots in a swarm

can sacrifice themselves to locate explosives [21]. Further, robotic

swarms are capable of distributing workloads to provide more sig-

nificant results over large areas. Distributing tasks among robots

allows for simultaneous completion of multiple tasks by the swarm.

Effective network monitoring is vital to the success of swarm

robotics. The role of network monitoring in swarm robotics is to

provide updated state information about robots and networks, i.e.,

local and pair-wise parameters. Local parameters include robot-

specific data such as battery consumption, average data rate, and

mobility. Pair-wise parameters include data between two nodes

in the network such as received signal strength indicator (RSSI),

bandwidth, delay, link quality, and packet loss rate.

Network monitoring can be placed on top of existing infrastruc-

tures to provide a service to upper layer protocols or algorithms.

In the context of the applications previously discussed, network

monitoring provides information to be used for different swarm

tasks. When delegating tasks in a swarm, it is vital for a node to

be knowledgeable of its peers. One example of how network mon-

itoring information could be used is in coverage planning. It is

possible for a coverage planning algorithm to consider the battery

level of each node in the network. Another example is Quality of

Service (QoS) routing for multimedia data captured by robots in

a swarm. Many QoS routing algorithms consider bandwidth and

delay constraints between nodes when planning the routing path.

Yet another example is point to point routing where the best route

is defined as the one that provides the best link quality based on

RSSI.

Network monitoring in swarm robotic systems is faced with

several interesting challenges, including limited onboard resources,

stringent energy constraints, and the dynamic network topology

of swarms.

• Network monitoring is a foundation service that supports

designated missions. With limited onboard computation and

storage resources on each robot, network monitoring must

be light weight and cost effective in order to not interfere

with the mission.

https://doi.org/10.1145/1122445.1122456
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• When a robotic swarm is completing a mission with tight

constraints, battery is a major limitation. For a robot, the

most energy consuming activity is movement. The second

largest source of energy consumption is communication. En-

ergy consumed by computation and sensing is much less

than moving and communication. While network monitor-

ing has no control over robot mobility, it can try to reduce

communication incurred.

• In mobile robotic swarms, network topology is constantly

changing due to the robots’ mobility and varying link quality

between robots. In addition, robots may join or leave the

network at any time. Hence, effective network monitoring

solutions must be robust to the dynamic trends of mobile

robotic swarms.

To the best of our knowledge, existing distributed swarm ro-

botics methods do not provide an effective solution for network

monitoring. Drawbacks to these solutions include unnecessary

communication, wasted energy, or even insufficient information.

Further details regarding related works are addressed in Section 2.

To overcome the drawbacks of existing approaches, we adopt

a distributed hierarchical paradigm. To reduce overhead incurred

by network monitoring and to avoid interfering with robot coordi-

nation and data communication, we apply the concept of approx-

imate monitoring. Instead of maintaining accurate system state

information for each region of the entire environment, we only

maintain system status information at a “sufficient” level of accu-

racy to ensure desired quality. The approximate monitoring is one

distinguishing feature of our approach.

2 RELATEDWORK
Since robotic swarm systems highly resemble MANETs (Mobile

Ad-hoc Networks), we surveyed existing network monitoring solu-

tions developed for MANETs. Network monitoring solutions can be

classified based on monitoring architectures, network status data

representation, data storage, and monitoring frequency.

Monitoring Architectures. Network monitoring in MANETs

use either hierarchical or flat architectures [6]. Hierarchical ap-
proaches to MANET monitoring are separated by the presence of a

central entity.

• In centralized hierarchical approaches [4, 7, 9, 22, 27], nodes

are divided into “clusters.” Clusters have a node that is des-

ignated to be in charge of monitoring that cluster. This node

may be referred to as the “clusterhead” [9], a “manager node”

[4, 27], or a “domain policy agent” [7]. These approaches are

considered centralized because of the presence of a single

entity that is above the nodes managing the clusters.

• Decentralized hierarchical approaches [2, 11, 12, 18–20, 25,

26, 28] use distributed algorithms where monitoring is done

without a top-level node managing the entire network. These

algorithms run on each node in the network without global

knowledge of the network. Just like the centralized hierar-

chical approaches, the distributed hierarchical approaches

create clusters that are managed by a manager node. The

managing node commonly contains a dominant trait in its

cluster [6, 12, 20, 25, 28].

Flat network monitoring architectures [6, 19, 26, 29] distribute net-
work management tasks throughout the network without relying

on a clustering topology [6]. Some flat approaches distribute moni-

toring nodes throughout the network that act as sinks [18, 19, 26].

These nodes gather information for agent nodes as they pass by.

Flat architectures are far less common than hierarchical ones. This

is because flat architectures have difficulty with scaling. As net-

work size increases, it becomes increasingly difficult to monitor a

network using a flat architecture [6].

Monitoring Frequency. The frequency of network monitoring

typically falls into one of three categories: event driven, oppor-

tunistic, or periodic. Event driven approaches provide network

monitoring upon a ’trigger’ event [3, 6, 7, 11, 12, 19, 20, 29]. Oppor-

tunistic approaches gather data whenever a monitoring agent has

the ability to monitor another node in the network [18, 27]. Peri-

odic network monitoring provides monitoring every predetermined

time unit [4, 8, 25, 26, 28].

Network Status Data Representation/Model. Our proposed
work applies approximation algorithms for different local and pair-

wise parameters in a network, which is similar to what has been

done in the state of the art in creating models for sensornets [14].

One approach uses a time varying multivariate Gaussian with prob-

abilistic confidences to compute sensor models.

Probabilistic models for predicting data in MANETs have been

described in [4, 13, 17, 23]. One method is to use a statistical model

that uses historical data to predict the next time two nodes will be in

contact in a P2P (peer to peer) network [23]. This model calculates

the mean estimation for how long it will be until nodes are in

contact, as well as a standard deviation to provide error. Another

model calculates a spatio-temporal probability that two nodes will

be connected, and builds clusters of predicted-to-be well connected

nodes [4].

Network Status Data Storage. A common method for storing

local and global data in MANETs is through a Management Infor-

mation Base (MIB). Several different methods use an MIB to keep

track of network states [9]. In hierarchical approaches, data is often

aggregated by manager nodes [6, 22], the manager locally stores in-

formation for all of the nodes in its cluster. In distributed approaches

data is stored locally on each node [3, 6, 16, 19, 20, 27, 29].

3 REGRESSION BASED NETWORK
MONITORING (REM)

We have designed a novel network monitoring approach to monitor

a swarm robotic network in a cost effective manner. Since commu-

nication consumes more energy than computation, the REgression-

based network Monitoring (REM) approach decreases communica-

tion overhead by having nodes predict values of their peers instead

of communicating whenever possible, decreasing battery consump-

tion. Saving battery is an absolutely crucial aspect to the success of

swarm robotics, and we believe REM can move this evolving field

towards a viable and effective network monitoring solution.

3.1 Overview
REM follows a distributed hierarchical approach. We chose a dis-

tributed approach because we do not want REM to have a single
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point of failure from a centralized entity. A distributed architec-

ture is flexible and allows for the immediate deployment of the

swarm in any environment. REM follows a hierarchical approach

in which nodes in the network are assigned as either a child node

or a clusterhead. We chose a cluster-based approach because 1)

clustering greatly reduces network monitoring overhead by only

sending network monitoring messages to a node’s clusterhead and

2) in many situations nodes in a swarm naturally cluster together.

For example, in an evacuation, groups of people move as one unit,

providing a natural transition to forming clusters.

REM predicts network parameters whenever possible. Models

are created using regressions that provide accuracy within a thresh-

old for the task at hand. Child nodes create REM prediction models

for local and pair-wise parameters and transmit them to their clus-

terhead. During runtime, the clusterheads run the REM prediction

models of their child nodes. As long as an updated model is not

transmitted, the model is assumed to hold true to its estimated

accuracy. A flow chart showing how nodes transfer models to their

clusterhead is shown in Figure 1.

Figure 1: Flow chart for clusterheads

Every REM model is built as a function of time. Therefore, at any

time t , the clusterhead can calculate the predicted value of different

network parameters for its child nodes.

When a node transmits an updated model, it simultaneously

begins running that model. While running its own model, the node

is comparing its predicted values to the actual measured values.

When the measured value falls outside of the error threshold of the

predicted value for the model, the node will update the model and

transmit the new model to the network.

3.2 Generating REM Models
Historical measured data allows REM to perform best fit regressions.

REM can represent large data sets with only three variables: β , µ,
and σ . REM generates all predictive models as a function of time. A

table showing the different internal parameters for building REM

models is shown in Table 1.

Table 1: REM Internal Model Parameters

Variable Description

Ω Network wide max error threshold (percentage)

I Initialize count, number of data points needed

for initial model

Dmax Maximum difference count

S Number of standard deviations to fall outside

threshold

∆ Max difference to fall within threshold

W A list of weighted averages and time stamps

N Current window size

Q A list of outliers withinW and N

σt A particular model’s standard deviation at time t

All prediction models created in REM use best fit regressions.

The regression models are performed on I data points. During the

network’s lifetime, the window size N determines howmany points

are used to generate new models for models that perform poorly. In

this work, we focus on modeling two parameters: remaining battery

level as a representative for local data, and received signal strength

(RSS) as a representative for pair-wise data. The process for gen-

erating a REM prediction model is outlined below. All regressions

are performed on a list of weighted averages,W , for a window N .

The window size is set at the start of a network’s lifetime.

All models take the following form where P(t) is the predicted
value at time t and F (t) is some function of time. Equation 1 shows

the generic equation for a REM prediction model.

P(t) = µ ∗ F (t) + β (1)

Creating a REM prediction model follows a three-step process.

Step 1 : Linearize the input data. This is done by taking every

data point and replacing the time with F (t).
Step 2 : Perform a linear regression on the linearized data.

The linear regression will provide the slope, µ, and the y-

intercept, β of the linearized data. The linear regression is

performed using the equations outlined below, where xi
represents the ith linearized time value, x represents the

mean of the linearized times, y represents the measured data

points, and n represents the number of data points.

Sx =
∑
i xi , Sy =

∑
i yi

Sxx =
∑
i (xi − x)

2

Sxy =
∑
i (xi − x) ∗ (yi − y)

Sxx =
∑
i (yi − y)

2

µ = (n ∗ Sxy − Sx ∗ Sy )/(n ∗ Sxx − Sx ∗ Sx )
β = (Sy ∗ Sxx − Sx ∗ Sxy )/(n ∗ Sxx − Sx ∗ Sx )

Step 3 : Use µ and β to build Equation 1.

3.2.1 Remaining Battery Level. For the remaining battery level

prediction model, REM uses a linear regression. The battery level of

a node is dependent on three main activities: movement, network

communication, and computation. REM assumes that throughout

a node’s lifetime in a network, these activities will be relatively

constant, maintaining a linear drain in battery life. Even if there is

variance in the level of battery draining, the REMmodel will remain

valid if the actual value lies within a reasonable distance from the

predicted value of the model. If the battery is more dynamic, REM
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will simply recalculate the model more frequently and still provide

valid monitoring of battery level. Equation 2 shows the final form

of the REM battery level prediction model.

Battery(t) = µ ∗ t + β (2)

3.2.2 Received Signal Strength. For the received signal strength

prediction model, REM uses a logarithmic regression. A logarithmic

regression is performed by linearizing the data, performing a linear

regression on the linearized data, and then converting the data

back to a logarithm. Equation 3 shows the final form of the REM

logarithmic regression model for predicting RSS.

RSS(t) = µ ∗ ln(t) + β (3)

RSS has been shown to be logarithmically proportional to the

distance between the transmitting and receiving nodes [15]. Be-

cause the two nodes in this experiment are moving at a constant

velocity, RSS is also logarithmically proportional to time, as shown

in Figure 2(a).

The next step for generating a logarithmic regression model is

to linearize the data. This is done by replacing the time with the

natural log of the time (ln(time)). The linearized data is shown in

2(b). Now, a linear regression can be performed on this data, and

an RSS REM prediction model can be formed.

3.3 Regression Window
The data in the regression window changes when Dmax consecu-

tive bad data points have been received and the REM model needs

to adapt. There are three different criteria for determining if a REM

model no longer fits the incoming data. REM checks all three critera

at a predetermined update frequency: 1) The data is an outlier, or

falls outside of S standard deviations of the predicted value, 2) The

data is outside of the max threshold ∆ for the task at hand, and

3) The data is consistently off by similar margin so the model is

trending wrong. The trend error uses one standard deviation, or σ
as the minimum error for a bad trend remodel to occur. The REM

procedure for determining bad data is shown in Algorithm 1.

Algorithm 1 Bad data detection algorithm

1: procedure DetectBadDataPoint
2: deviation← abs(value - predictedValue)

3: if deviation > ∆ then
4: return "Threshold error"

5: else if deviation > S ∗ σt then
6: return "Standard deviation error"

7: else if deviation > (S ∗ σt )/3 then
8: if (lastDeviation < 0 AND deviation < 0) OR

9: (lastDeviation > 0 AND deviation > 0) then
10: return "Bad trend error"

Once Dmax consecutive bad data points are detected, a new

model must be created. The node will continue measuring data

until it has N data points, build a model, and then broadcast the

updated model.

3.4 Error Model
The error of a model is represented by σ . REM calculates the aver-

age deviation from the predicted model value for all measured data

values within the window of the newly created model. The calcula-

tions for σ are shown below, where P(ti ) represents the prediction
model value at time ti ,Mi represents the measured value at time

ti , and j represents the data point measured N samples ago.

σtotal =
∑j+N
i=j |P(ti ) −Mi |

σmodel = σtotal /N

In the case where the average deviation is very low, σ is set to a

minimum deviation which can be manually set for the application.

The default value for minimum deviation is 1/5 of the maximum

deviation that the task can handle. The goal of setting a minimum

deviation is to remove bias in models that calculate unrealistic

average deviations. It is possible that N consecutive data values

will form a perfect regression that is actually not a good fit for

future data points.

The error parameter can be used by application layer protocols

to determine the accuracy of predicted values by the REM model.

Using σ , a range of possible values can be calculated.

3.5 Network Packets and MIB
This section describes the structure of REM packets and how cluster-

heads store REM prediction models in a Management Information

Base (MIB). Once REM creates a new model, it must be transmitted

to the node’s clusterhead. The structure of a REM prediction model

packet is shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Node ID Model Time To Live (s) Model Type

Mu (float)

Beta (float)

Sigma (float)

The first byte of the packet is the ID of the parent, or transmitting

node. The next 2 bytes are the time to live of the model in seconds.

By allowing 16 bits, the model can have a maximum time to live

of 2
16

- 1 seconds, which is approximately 18 hours. The next byte

represents the type of model. The next 12 bytes represent the model

parameters µ, β , and σ , which are all interpreted as 4 byte floats.

Upon receiving a packet from a child node, the clusterhead stores

the REM prediction model in its MIB. The MIB stores one model

of each type for each of its child nodes. For example, if node 1 has

child nodes 2, 3, and 4, node 1 will store battery models and RSS

models for nodes 2, 3, and 4 in its MIB. A child node will transmit a

REM RSS prediction model for every node it is connected to.

The MIB is used to provide network monitoring information

upon request to other applications in the network. When providing

network monitoring information, the clusterhead simply finds the

model for the requested node, and calculates the updated value as

a function of time using µ and β .
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(a) Relationship between received signal strength and time (b) Linearized data from Figure 2(a)

Figure 2: Process of linearizing measured RSS data

3.6 Model Creation Complexity
Assume a swarm size of S . Each node in the network is creating

REM prediction models for all of its neighbors. At any given time,

each node can have at most S predictionmodels. S−1 RSS prediction
models if the node is connected to every other node in the network,

and 1 REM model for local battery drain.

Now, consider that the time complexity to form a prediction

model takes time C . The time complexity of REM on a given node

in the swarm is O(S ∗C). C is related to the window size of REM,

N . The window size is the number of points that are used to form

the regression model. Recall the three step process to creating a

prediction model using REM. Step 1 is to linearize the input data,

and step two is to run a linear regression. Linearizing the data and

finding the mean values x and y can be done in O(N ) time. Once

these values have been calculated, performing the linear regression

also takes linear time. Finally, calculating the error of the newly

formed model can be done in linear time. Therefore, the complexity

of REM for a given node is O(S ∗ N ).

4 PERFORMANCE EVALUATION
To evaluate our approach, we first validate the REM prediction

model using both realistic and synthetic data sets, then identify the

best parameters to use for REM, and finally compare REM against

a brute-force approach in supporting application level tasks.

4.1 Validation of REM Prediction Models
Two preliminary studies were done to test REM’s ability to predict

received signal strength between nodes. We tested two scenarios:

an infrastructure based network and a peer to peer based network.

While we have designed REM with the intention of being used

in distributed peer to peer networks, it is important to test its

prediction capability in a network with a centralized infrastructure.

The infrastructure based study shows REM’s ability to predict

the received signal strength of a single mobile node. In addition,

this study was used to show that while received signal strength

is known to be logarithmically proportional to distance, REM can

build prediction models that are logarithmically proportional to

time to predict future RSS. In this study, the node is moving in

an outdoor environment and communicating with a central access

point (AP). This study also showed REM’s capability to deal with im-

precise, real world data. We compared REM’s prediction capability

to the predicted RSS of Friis Propagation Loss algorithm [15].

The peer to peer study showed REM’s abilty to predict the re-

ceived signal strength between two or more mobile nodes. This

study was a proof of concept to prove that two nodes moving in

different directions still have predictable signal strength.

4.1.1 Infrastructure Based RSS Prediction. This infrastructure based
study shows REM’s ability to predict RSS between a node and a

static AP. The study justified REM’s performance by comparing the

REM prediction model to a well known received signal strength

equation: the Friis Propagation Loss algorithm [15]. The Friis Prop-

agation Loss algorithm uses the distance between two nodes to

predict the signal strength. The REM model is able to predict the

signal strength without knowing the distance between the nodes.

This is essential for REM because we want REM to be robust to a

variety of environments that may not have GPS capabilities such

as underground, space, etc.

This study was done using real world data collected from a mo-

bile robot [24]. The data used was obtained from Crawdad. Using

real world data introduced error, thus making the REM predic-

tion model not perfectly accurate. The data set had radio signal

strength and location data from a mobile robot in a semi-outdoor

environment.

In order to use the data with REM, a modification had to be made.

Any data rows where the robot was immobile (velocity = 0 m/s)

were removed. REM used time stamps to predict future RSS values.

Figure 3 shows the received signal strength predictions from REM

and the Friis model.

On average the Friis propagation loss RSS prediction was off by

1.96642 dB and REM was off by 2.25084 dB. When the REM model

becomes outdated, or the robot changes direction, there are Dmax
consecutive bad data points before the model adapts. These bad

data points significantly contribute to the average error of REM.

Without these values, the REM model is much more accurate. This

study showed that REM is capable of predicting the received signal
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Figure 3: Predicted received signal strength of REMand Friis

strength of a node moving with respect to a centralized infrastruc-

ture. This study also showed that while RSS is known to be logarith-

mically proportional to distance, REM is capable of calculating the

RSS between two nodes without knowledge of distance. Because

the node are mobile, and distance is a time varying parameter, the

distance can be replaced with time. Another important aspect of

this study is the use of real world data. Even though the data has a

significant amount of error because of natural phenomena, REM is

capable of predicting the RSS.

4.1.2 Peer to Peer RSS Prediction. A second study was done to

test REM’s prediction capability in a peer to peer network. The

simulation was done using Network Simulator 3 (NS3).

We created an evacuation scenario as shown in Figure 4. Twelve

nodes were placed in the environment in different rooms. This

setup allowed some nodes to move in the same direction and some

nodes to move in completely different directions. We were able to

analyze REM’s prediction ability in both scenarios.

Figure 4: Floor schematics and node locations for the indoor
evacuation simulation

The simulation starts when a fire alarm goes off. At this time,

every node immediately moves towards the exit of its room. Once

in the hallway, the nodes move to the closest EXIT. The average

error of REMwas 4.2779 dB. Further analysis showed that error was

greatly increased because of specific outlier points. Outliers occur

when change direction when they are already close together. This

movement causes a drastic increase in RSS. REM requires multiple

samples to adapt to changes in movements, so for this brief period

of time there is a large amount of error. This phenomena can be

seen between Node 0 and Node 2 in Figure 5(a) and Node A and

Node B in Figure 5(b). When these nodes turned, one node was able

to take an ’inside’ turn moving the nodes closer together.

In cases where nodes never get close to each other, REM performs

very well. This can be seen between Node 0 and Node 7 in Figure

5(c).

This preliminary study showed REM is not only capable of pre-

dicting the RSS of a mobile node from a static base station, but it

can dynamically predict the signal strength between two mobile

nodes with similar accuracy.

4.2 Simulation Scenario
An environmental monitoring scenario was created using Network

Simulator 3 (NS3). We were able to modify NS3 source code to pro-

vide network monitoring (REM), clustering, and a custom routing

algorithm to the drone swarm.

Because REM is providing a service to upper layer protocols, it

was created on the application layer. Other layers in the network

were created using existing NS3 frameworks. The physical layer

was configured to 802.11b for this work. The ad-hoc Wi-Fi MAC

layer was used for this simulation. We modified an existing battery

model to allow battery drain for network communication and node

movement. Drones followed the RandomWaypoint Mobility Model

which made drones move directly to a random location in the

simulation space at a constant velocity.

The simulation scenario consists of a swarm of drones moving

around a space with dimensions DxD. There is be a static central
server that is collecting environmental monitoring information

from drones in the swarm. The server is located at (0, D/2) in the

simulation space. The goal of the swarm is to move around the

space, collect environmental monitoring data, and then route that

information back to the central server for storage.

Nodes in the network were assigned different velocities ranging

between 2 m/s and 15 m/s. This is because the velocity range for

a standard commercial drone while taking video is 1.5 m/s to 10.5

m/s [1]. In the future, we would like REM to provide network

monitoring to allow QoS routing of multimedia data. The max

speed of the Parrot Bepop 2 drone is 37.28 mph, which is just over

16 m/s, providing the max velocity cap for these simulations.

We started with internal experiments which identified the op-

timal values for internal REM parameters. Internal experiments

tried different combinations of internal parameters within REM,

and compared the percent error of REM’s prediction compared to

the actual measured value.

Once the internal experiments were complete, the most success-

ful REM configuration was compared to our baseline approach in

the external experiments. The external experiments included clus-

tering and routing. Two metrics were compared between REM and

our baseline approach for a variety of different simulation setups:

1) network monitoring overhead and 2) packets delivered to the
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(a) Node 0 and Node 2 (b) Node A and Node B (c) Node 0 and Node 7

Figure 5: Predicted vs actual RSS between nodes in building evacuation

central server. The drone swarms success hinges on the number of

environmental monitoring packets delivered to the central server.

To enable a complete simulation, the network needed a cluster-

ing and routing scheme. Any clustering algorithm could be used

for REM. In order to see the impact that REM has on swarm per-

formance, a clustering scheme that relies on connectivity between

nodes was used. The clustering scheme used is a Weakly Connected

Dominating Set (WCDS) [10]. This clustering scheme assigns clus-

terheads that create a dominating set across the network with

gateway nodes between clusterheads. The goal of these simulations

is to see the impact of REM on swarm task performance. To do

this, clusterheads looked at their children to find a gateway node

that has the shortest path to the server. For the child nodes, the

nextNode is always the clusterhead unless the node is the gateway

node, then it is the next node in the path to the server, most often

a neighboring clusterhead. When a node comes in contact with the

server, the connection is propagated up through the network and

shortest paths are updated accordingly.

4.3 Internal Results
First, we evaluated parameters within REM. We performed opti-

mization experiments on three different parameters: 1) the initialize

count, I ; 2) the max difference count, Dmax ; and 3) the number

of standard deviations for a model to become invalid, S . All of
these experiments were conducted using the same fixed parameters

outlined in Table 2.

Table 2: NS3 simulations environmental variable assign-
ments

NS3 Variable Value

Number of nodes 20

Simulation dimensions 1000m x 1000m

Node max speed 10 m/s

Node min speed 5 m/s

Simulation Time 300 secs

Optimal Initialize Count. The first optimized parameter was

the initialize count. We also used this value for the window size

when new models are created. These simulations were done with

Dmax = 3 and S = 3. Four different values for the initialize count

were tested, I = 2, 3, 4, and 5. To analyze the performance of each

value, we calculated the average percent error for every point pre-

dicted by REM. The average percent error for the four different

initialize count values for predicting battery level and received

signal strength can be seen in Figure 6(a) and Figure 7(a).

The results show that the initialize count has a very small impact

on the performance of REM. This could be because NS3 provides

perfectly consistent RSS data. Therefore, the samples measured

always lie on the line of best fit. In practice, it is much more likely

for there to be bad samples that do not accurately represent RSS. In

this case, a higher initialize count would be needed to account for

the variance in the data. However, for this simulation, an initialize

count of three seems to yield the most reliable results. This is

surprising because one would expect the more samples measured,

the lower the error. The reason this is not the case is that the longer

REM waits to build the model, the closer the model gets to having

to change, resulting in a decrease in the duration of successful

predictions.

Optimal Max Difference Count. The second optimized pa-

rameter was the maximum difference count. These simulations

were done with I = 3 and S = 3. Like the initialize count, four differ-

ent simulations for the maximum difference count were performed

with Dmax = 2, 3, 4, and 5. The results from these simulations can

be seen in Figure 6(b) and Figure 7(b).

The optimal max difference count experiments yielded interest-

ing results. As expected, the lower the value of Dmax , the more

accurate the model. This is because REM will recalculate more of-

ten, increasing the likelihood of having an appropriate model for

the current trend of samples. However, this was not always the

case for both experiments. This could be for the same reason as the

initialize count.

Optimal Number of Deviations. The third internal optimized

REM parameter is the number of deviations. These simulations were

done with I = 3 and Dmax = 3. The results from these simulations

can be seen below in Figure 6(c) and Figure 7(c). We hypothesized

that a higher number of deviations would result in decreased error.

However, the difference between increased number of deviations

was less than expected. Figure 7(c) shows that increasing from three

deviations to five hardly changes the average percent error of the

REM prediction model. Again, this could be because of the nature
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(a) Different initialize counts (b) Different maximum difference counts (c) Different number of deviations

Figure 6: Battery prediction accuracy for different internal parameters

(a) Different initialize counts (b) Different maximum difference counts (c) Different number of deviations

Figure 7: Network RSS prediction accuracy for different internal parameters

of a simulation in that it provides perfect data. By increasing the

number of required σ counts to recalculate a prediction model, REM

increases the chance of creating accurate prediction models.

4.4 External Results
To compare the effectiveness of REM, we developed a baseline

"brute force" networkmonitoring approachwith the intention of not
approximating. The brute force algorithm follows a decentralized

hierarchical architecture. This approach uses the same clustering

and routing scheme as REM. Nodes enter a broadcasting state every

α seconds. In the broadcasting state, nodes will broadcast their

locally measured network monitoring values for RSS and battery

level. The node’s clusterhead will receive this information and store

it in an MIB.

We implemented the brute force algorithm in NS3. We compared

the success of delivering packets to a centralized server between

REM and three different update frequencies for the brute force

approach, α = 4, 8, and 12 seconds.

The external simulations compared REM to the brute force ap-

proach. For these simulations, we compared the different approaches

using average overhead per node and average packets received by

the server per node. The hypothesized outcome of these experi-

ments was REM providing a large decrease in overhead, but at the

sacrifice of decreased performance. This is because by predicting

the state of the network, REM introduces uncertainty and error. The

brute force approach also has error, but provides more frequent up-

dates of the network’s state. Because of the more frequent updates

and providing actual data about the network instead of predictions,

we hypothesized the brute force approach will be able to deliver

more packets to the central server than REM.

Impact of NodeCount. The first parameter that was simulated

was node count. We simulated environments of 10, 20, 30, 40, and 50

nodes. All of the environmental parameters except the simulation

time were the same for these five experiments. The simulations

times for 10, 20, 30, 40, and 50 nodes were 180, 180, 180, 120, and

90 seconds respectively. The simulation space was 1000 m x 1000m

and nodes moved at a constant velocity of 7 m/s.

As hypothesized, REM provides much less overhead than the

brute force approaches. Figure 8(a) shows the average overhead

per node for the different simulations of node counts. REM has

significantly less overhead than that of the brute force approaches

for all node count simulations. Figure 8(b) shows the average over-

head in bytes/node for each of the four simulated approaches. REM

has approximately half of the overhead of the brute force approach

with the least overhead, where the update frequency was every

12 seconds. This means that the REM prediction models typically

lasted longer than 12 seconds. These results are encouraging in
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REM’s ability to predict the state of a network using regressions

on measured RSS data.

Number of packets received by the central server was used to

show the performance of these four approaches. As shown in Fig-

ure 8(c) and Figure 8(d), all four approaches yield fairly similar

results. However, REM and the brute force with α = 4 had the

highest performances with the most packets delivered.

Impact of Node Density. The next parameter that was simu-

lated was density. For these experiments, the node size was kept the

same at 20 nodes, and the size of the space was changed, resulting

in a change of density. We simulated environments of 500x500,

750x750, 1000x1000, and 1250x1250 meters. All simulations were

180 seconds long with the nodes moving at 7 m/s. As hypothe-

sized, REM has much less network monitoring overhead than the

brute force approaches. These results can be seen in Figure 9(a) and

Figure 9(b).

Similar to the node count, the performance of all four approaches

was relatively similar. REM had slightly worse performance than the

brute force approach with α = 4. The results of these simulations

can be seen in Figure 9(c) and Figure 9(d).

Impact of Node Velocity. The final parameter that was tested

was different velocities. For these simulations, the node count was

20 nodes and the nodes moved in a 1000m x 1000m space. Constant

velocities of 2 m/s, 4 m/s, 7 m/s, 10 m/s, and 15 m/s were tested.

The velocity range for a Parrot Bepop 2 drone while taking video is

approximately 1.5 m/s to 10.5 m/s [1]. The max speed of this drone

was the motivation for performing the simulation at 15 m/s.

As hypothesized, REM had less overhead than the brute force

approaches. However, it should be noted in Figure 10(a) that when

moving at the top speed of 15 m/s, REM’s overhead increases and

comes closer to the brute force approach with α = 12. This is

because as velocity increases, the lifetime of REM prediction models

decreases. As nodes move faster, they move in and out of range

of neighbors more frequently. This results in REM recalculating

models, increasing network monitoring overhead. Despite this,

Figure 10(b) shows that REM still has significantly less overhead

than the three brute force approaches.

Similar to the first two parameters, the performance of all four

approaches was relatively similar, with REM providing the most

packets delivered to the server. The results of these experiments

can be seen in Figure 10(c) and Figure 10(d).

Performance Summary. Overall, REM performed as expected.

By predicting the network state with regression-based approxima-

tion models, REM decreased network monitoring overhead. REM

provided little or no loss in performance when delivering packets

to the central server.

5 CONCLUSIONS
This study demonstrated a foundation for the development and

application of REM, our REgression-based network Monitoring ap-

proach. REM demonstrated capability to predict the RSS and battery

level of nodes in a swarm of mobile, networked robots. The robots

were collaborating towards a common goal, and REM’s imprecise

state monitoring provided little hindrance to the performance of

the swarm.

Effective network monitoring is vital to the success of swarm

robotics, and REM seeks to provide this utility. REM’s approximate

style network monitoring algorithm reduces overhead, saving en-

ergy, by predicting network states whenever possible. We plan on

continuing to develop REM and applying the framework to a va-

riety of swarm robotic tasks in highly constrained environments.

We hope that REM will help to ensure the successful performance

of swarm tasks.
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Figure 8: Node count external simulations comparing REM to three brute force models
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Figure 9: Density external simulations comparing REM to three brute force models
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